Convex Multi-Task Learning by Clustering

نویسندگان

  • Aviad Barzilai
  • Koby Crammer
چکیده

We consider the problem of multi-task learning in which tasks belong to hidden clusters. We formulate the learning problem as a novel convex optimization problem in which linear classifiers are combinations of (a small number of) some basis. Our formulation jointly learns both the basis and the linear combination. We propose a scalable optimization algorithm for finding the optimal solution. Our new methods outperform existing stateof-the-art methods on multi-task sentiment classification tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers

Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering  in which there is no need to  be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...

متن کامل

Convex Subspace Representation Learning from Multi-View Data

Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...

متن کامل

Multi-Stage Multi-Task Feature Learning

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to...

متن کامل

Clustered Multi-Task Learning: A Convex Formulation

In multi-task learning several related tasks are considered simultaneously, with the hope that by an appropriate sharing of information across tasks, each task may benefit from the others. In the context of learning linear functions for supervised classification or regression, this can be achieved by including a priori information about the weight vectors associated with the tasks, and how they...

متن کامل

Multi-Task Multi-View Clustering for Non-Negative Data

Multi-task clustering and multi-view clustering have severally found wide applications and received much attention in recent years. Nevertheless, there are many clustering problems that involve both multi-task clustering and multi-view clustering, i.e., the tasks are closely related and each task can be analyzed from multiple views. In this paper, for non-negative data (e.g., documents), we int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015